



#### **Two Color IRFPAs for Navy Missile Warning**

#### **Night Operations Symposium** 13 March 2002 James R. Waterman **Naval Research Laboratory**





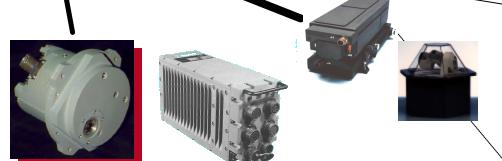


#### **Outline**



- Missile Warning / TADIRCM concept
- Two color midwave IR phenomenology
- System live fire test results
- Two color focal plane array mantech program
- Program plans transition plan
- Summary




#### **TACAIR DIRCM Concept**





- Detect Missile And Angle-of-arrival
- Track It
- Jam It (Open Loop) With High J/S

**Jamming Radiation** 

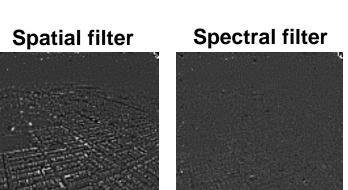


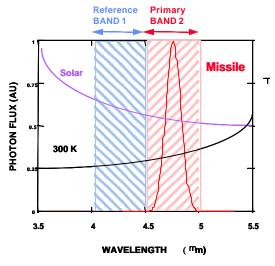
#### **Hardware Components:**

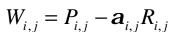
- Six Two-color IR Staring Sensors(4p Coverage)
- Signal Processor
- Modulated IR Laser
- Compact Pointer/Trackers (Upper &Lower hemispheres)

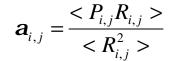


### Two Color Infrared Missile Warning Overview

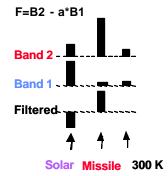




- Point source detection in heavily cluttered scene leads to serious false alarm issue
  - Two color spectral filtering solves false alarm problem


Band 1 image Band 2 image




Ballu Z Illiage



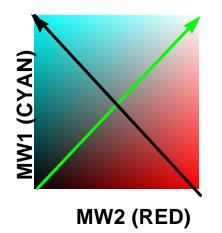


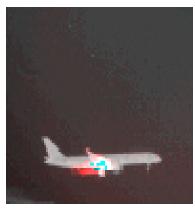





 Signals in two bands very different for 300 K blackbody, solar, and plume emission

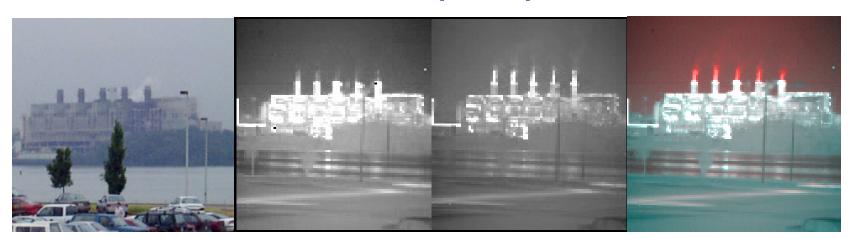



<> Denotes 5x5 Local Expectation


 Temporal processing leads to threat declaration



# Two Color MWIR CO2 Emission Detection Real-Time Imaging








- Commercial aircraft at dusk
  - Approximate range 0.5

**Coal fired power plant** 



Visible MW1 MW2 Fused 2 color MW

5



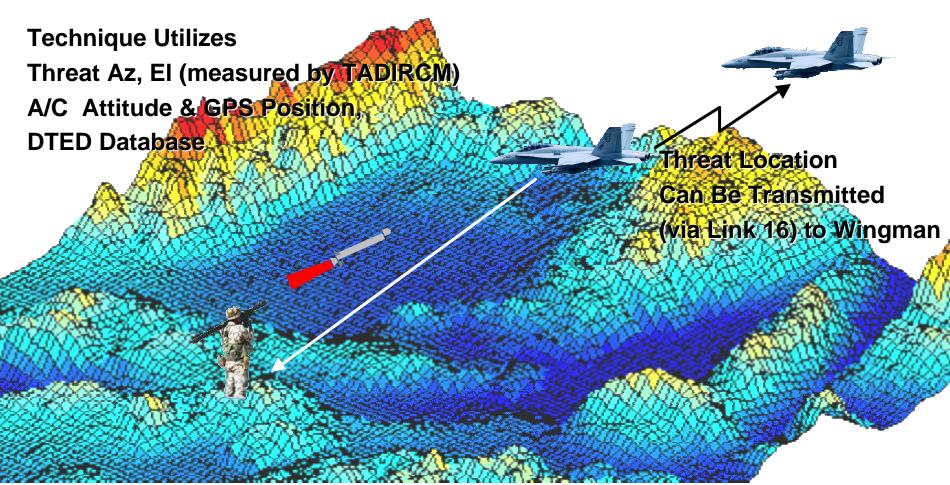
#### **China Lake QF4 SAM Live Fire Results**







|                           | 5000  |                             | ٦   |
|---------------------------|-------|-----------------------------|-----|
| n²)                       | 4500  | Primary Band Reference Band | +   |
|                           | 4000  | Kelerence Ballu             | 1   |
| ıb(Mcı                    | 3500- | ۸.// ۱۱۸۸                   | 1   |
| Amplitude @ Sensop(W/cm²) | 3000  | ,/\\" V <sup>Y</sup> \      | 1   |
| @<br>8                    | 2500  | MWS Declare                 | 1   |
| olitud                    | 2000  | Laser On                    | 1   |
| Amk                       | 1500  | Missile Break Lock          | ۷   |
|                           | 1000  |                             | ľ   |
|                           | 500   | Mindry Murray WWW.          | 1   |
|                           | 0     | 1 2 3 4 5 6 7<br>Time (sec) | _ { |
| SEA SERVICE               |       |                             |     |


| Event           | Time (sec)  |
|-----------------|-------------|
|                 | Tille (Sec) |
| Ejector         | 0.00        |
| Main Motor      | 0.43        |
| Declare         | 1.51        |
| Laser on Target | 1.80        |
| Missile OBL     | 1.87        |
| Flare Dispense  | 5.30        |

Miss Distance: 653 m



#### Detection at Launch Allows Geo-Location Of Threats







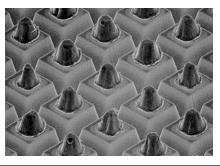
## Navy Advanced IRFPA Mantech Program Objective and Technical Scope



#### Objective

 Develop manufacturing techniques to reduce the cost and enhance the availability of two color HgCdTe based mid-wave staring infrared focal plane arrays for missile warning

#### Technical Scope


- Detector material growth and characterization
- Detector device processing techniques
- Detector-readout circuit interconnect processes
- Focal plane array test procedures
- Integrated manufacturing database linked cost and yield models



# Manufacturing Technology: Two Color IRFPAs for Navy Missile Warning



# Raytheon(below) and DRS (right) two color detectors





#### **Benefit**

 Available low cost arrays for high detection range low false alarm rate IR missile warning sensor for FA/18 EMD program

#### **Objective**

• Enhance availability and reduce cost of two color IRFPAs for missile warning sensors

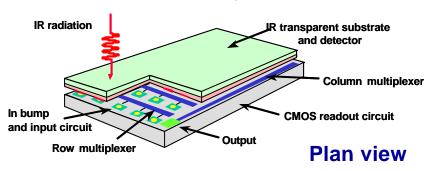
#### **Business Strategy**

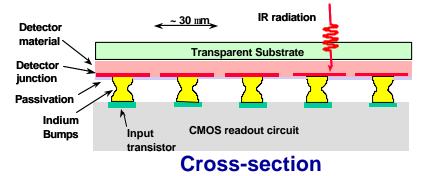
- -\$11 M over three years to two contractors
  - DRS and Raytheon InfraredOperations (with HRL)

#### **Related Efforts**

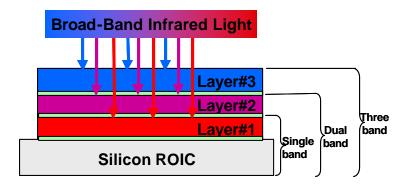
- Army dual band FPAs for FCS
- BMDO/Navy two color LW FPAs for interceptors

#### **Implementation**


- ONR FNC missile warning sensor program FY02-05
- FA/18 missile warning EMD program POM04
- AAR 47 upgrade

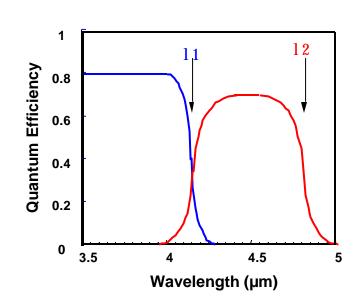



### Two Color Focal Plane Technology Basics




#### **Hybrid Focal Plane Array Architecture**



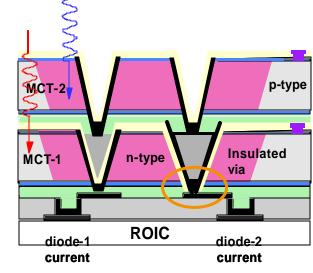



#### **Multi-Color Focal Plane Array Concept**

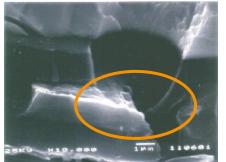


Each layer absorbs radiation up to it's cutoff (bandgap), is transparent to the wavelengths above it's bandgap, which are then collected in subsequent layers

#### **Two Color Spectral Response**







#### **DRS: Approach/Progress**



- High Density Vertically Integrated Photodiode architecture
  - LPE HgCdTe
  - Ion implanted junctions
  - Lateral photo-generated carrier collection
  - Simultaneous detection
- Program will build and test ~ 200 focal planes
- Baseline yield determined from initial lots: ~5%
  - Yield limited by bottom via metal – ROIC landing pad alignment
  - Impacts "interconnect operability"



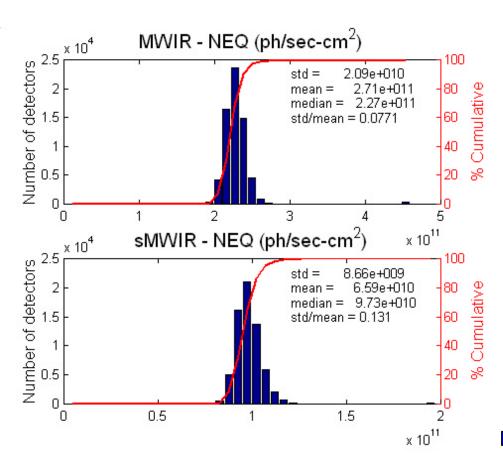
#### Good via-tab alignment Poor via-tab alignment

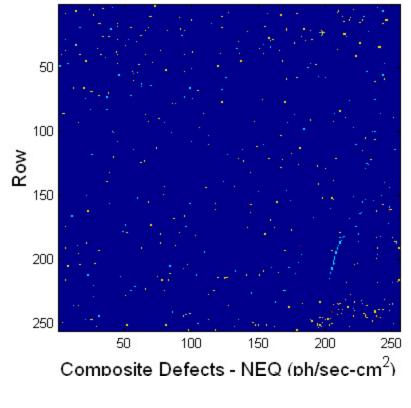




#### Manufacturing process fix

- Detector mask redesign
- Implemented, first lot in 1<sup>st</sup> quarter CY02





#### **Progress - DRS**



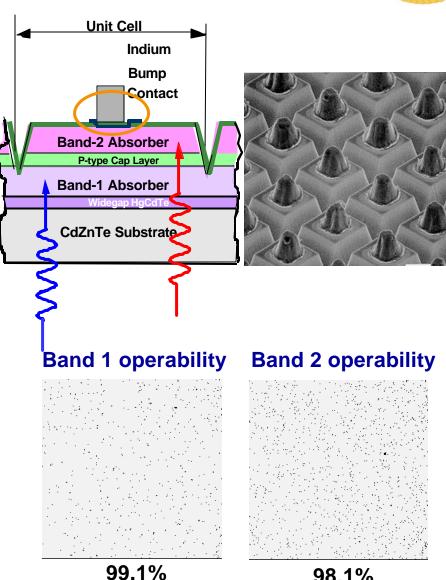
#### **Technical Achievement:**

First process development lot at DRS identified optimum via etch process for high NEQ operability (99.3%) arrays





No Defect


MWIR Defect sMWIR Defect



#### Raytheon: Approach/Progress



- Triple Layer Heterojunction HgCdTe
  - **Molecular Beam Epitaxial material** growth
  - Vertical carrier collection
  - Near 100 % fill factor, perfect registration collocation
  - Single In bump per pixel hybrid
  - Bias switched sequential operation
    - Multiple fast samples of both bands per frame
- Program will build and test ~ 120 focal planes
- **Operability initially limited by contact** resistance issues
- DOE approach identified surface preparation process enhancement
  - Low resistance ohmic contacts
  - **Higher operability focal planes** demonstrated





#### **Program Cost- Yield Goals**

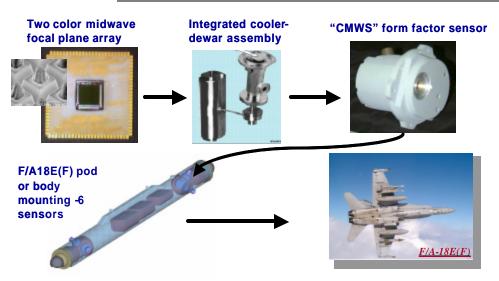


#### Cost per IRFPA

- Program goal is \$30K per FPA vs. present cost of \$200K
- Need ~\$10K in production quantities (un-funded requirement for additional transfer to high volume production facility or MBE on Si detector material)

#### End to end yield

- Program goal is to increase end-to-end yield by a factor of 6
- Detector die manufacturing cost
  - Reduce substrate usage by a factor of 2
- Detector die process complexity
  - 22 t0 17 steps
- Touch labor hours
  - E.G. Optimization of double-sided interdiffusion (DSID) process
    - Reduce labor content from 6.5 to 4.4 man-hours/cm<sup>2</sup>


#### Test costs

- Reduce test complexity
- Go to automated vs man-in-loop test



# System Capability Enhancements: Quadrennial Defense Review Operational Goals

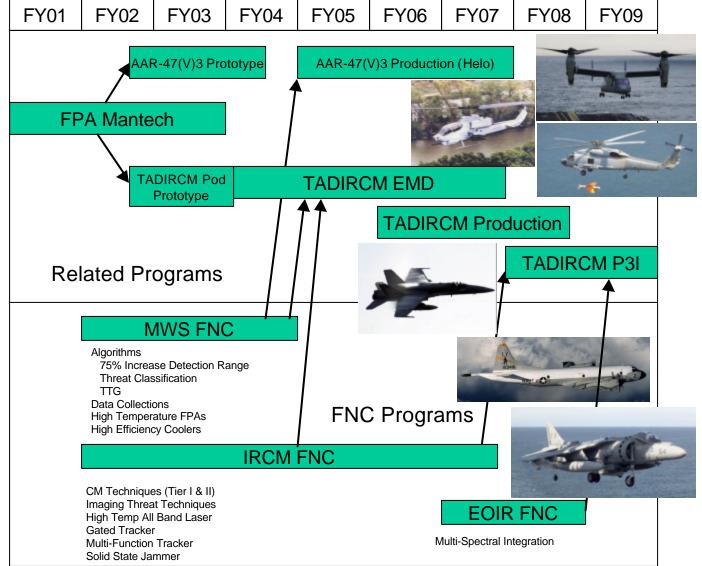




- High detection range, low false alarm rate two color IR missile warning for stressing platform dynamics and extreme thermal environments associated with tactical fighter aircraft
- Long range early warning time for helicopters with DIRCM

#### **Deny Enemy Sanctuary**

 Long-Range Precision Strike (defeat critical fixed and mobile targets at long range, rapidly, in all terrain and weather conditions in denied areas.)


#### **Project and Sustain US Forces**

 Anti-Access Capabilities (... long-range attack lethality, deep strike, ability to mass fires, strategic transport (sea and air) protection, battlespace understanding, assured mobility, covertly insert and recover personnel)



# Navy Aircraft Self Protection Programs (MWS & DIRCM)







#### **Summary and Conclusions**



- MWS /DIRCM system capability demonstrated in live fire test
- Baseline two color IRFPA capability established at both contractors
  - Key yield limiters identified
  - Manufacturing process enhancements underway to address these
- Program is on track to supply focal planes for Navy FNC sensor development efforts
- Mantech program cost goals critical for successful completion of FA18E/F TADIRCM program
- Prototype AAR47 upgrade for helicopter platforms underway